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FIGURE OF MERIT IN BISMUTH—I
TRANSPORT PROPERTIES OF INTRINSIC MATERIAL

T. C. HARMAN, J. M. HoNiG and B. M. TARMY*
(Received 19 June 1964)

Abstract ~Transport theory based on the relaxation time formalism has been applied to bismuth; the results
are used in Part 11 of this paper to determine the figure of merit of Bi in encrgy conversion processes. Using
the Jones-Shoenberg model for bismuth, analytic expressions have been derived for the electrical resistivity,
thermal conductivity, and for the Hall, Seebeck and Nernst coefficients. The Boltzmann transport equation was
solved for the perturbed distribution function using anisotropic relaxation times. The result was then introduced
in the transport integrals for the electric current and for energy flux to obtain the phenomenological equations
for each set of charge carriers associated with a given ellipsoid. The contributions of each group of carriers
were then added in the common symmetry coordinate system of the crystal to obtain the above-mentioned
transport coefficients. To derive analytic expressions, it was necessary to consider the special cases where the
magnetic field is aligned with each of the three symmetry axes and to pass to the limit of very low or very high
magnetic fields.

l. PRELIMINARIES

RECENTLY considerable interest has developed in the application of the Nernst and
Nernst-Ettingshausen effects to encrgy conversion ; this, in turn, has stimulated a search
for suitablc dcvice materials. Among the earlicst experimental studies in this direction
were measurements on the galvano-thermomagnetic properties, figure of merit, and gencral
device performance of Bi and Bi-Sb alloys [1-4] These experiments provide an opportunity
for checking out numerical predictions bascd on transport theory; if the answers are in
agrcement with cxperiment, then the thcory can be uscd in further investigations con-
cerning optimal operating conditions of thc device. The purpose of our work is thus two-
fold. In Part I transport theory is developed in some detail to establish several new
features; namely: (a) obtaining the solution of thc Boltzmann transport equation for
the very general case of anisotropic relaxation times, arbitrary magnetic field strengths,
and tempcraturc gradients, (b) deriving general thermodynamic rclations for the over-all
Seebeck and thcrmal conductivity tensors in terms of one-band contributions, (c) intro-
ducing anisotropic mobilities into the equations of intercst, (d) cstablishing thc nccessary
refinements of earlier transport theorics [3, 6] which bring theory in accord with experi-
ments, and (e) sctting up all cxplicit formulae needed for later usc. In Part 1F we check the
theoretical predictions against available cxpcrimental data for Bi and then utilize the
theory for calculating the appropriate figurcs of mcrit.

The band modcl which is used will be introduccd in Scction 3; howcever, it is well to
remark here that we shall gencralize the ABELES-MEIBOOM [5] treatment of Bi by taking
into account the JONES-SHOENBERG band model refinement [7]. Also, from general
consideritions it emerges [8] that materials best suited for encrgy conversion processcs
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2 T. C. HarMmAN, J. M. HoniG AND B. M. TARMY

based on the Nernst and Nernst-Ettingshausen effects arc intrinsic; we therefore specia-
lize to this case quite early. Other simplifications arc introduced as nceded to obtain the
final results in tractablc form.

We begin with the solution of the Boltzmann equation in the relaxation time formal-
ism. The procedure parallels that of an earlier derivation [9] to which it reduces for thc
isotropic case. The reader is referrcd to this discussion for ccrtain dctails and symbols.

One should note at thc outsct that the cxtcrnal force acting on charge carriers in a
band in zero magnetic field is not simply the applied electric field E, but, more gencrally,
the gradient of the band edge, V&5 [9] With this modification, the Boltzmann transport
cquation for isotropic mcdia reads:

(Ze/MIV(—&p/Ze) + (v x H)/c) . Vif+v.V,f= —(f—fo)r ™}, (1.1)

where Z = +1 for holes and — 1 for electrons, v = (1/#)V, &, & and &5 are the energies
and band edge energies, f or f, are the actual or equilibrium distribution functions and ¢
is the relaxation time; the remaining symbols have their conventional significance. We
obtain an approximate solution to equation (1.1) by the usual method [10] of setting
f=fo for first and third terms on the left and f = f, — v. ¥(¢f,/C¢e) in the remainder.
The first objective in thc general derivation is to find an exprcssion for thc quantity .
For this purpose, onc proceeds essentially as in [9]. The only modification required to
adapt thc result to anisotropic media consists in thc replacement of ™! by thc tensor

o

T~! = V. The generalization of equation (1.8), [9], is thus given as:

P.v—(Ze/ho)y x H).(¥.V,v) = (F"1.¥).v, (1.2)

where
P = ZeV(6gle) — TV ug/T) — (¢/ TV, T (1.3a)
= ZeV,({/e) + [(ug — &)/TIV,T. (1.3b)

In the above, ug = { — &5, and e = & — &5, where ( is the Fermi lcvel.
In the principal coordinate system of a particular ellipsoid, one can write

th‘/ﬁ = Vk'Vkle/ﬁz,

where the primed coordinates serve as a reminder that this special coordinate system is
being used; the quantity on the right represents a diagonal entry of the reciprocal mass
tensor § = m~'. On inserting this result in equation (1.2) and applying the triple scalar
product rule to the term (v x H). (¥ .§), one obtains:

(P — (Ze/o)H x (¥.9)] — (E'.¥)).v=0. (1.4)

As has been discussed in connection with the comparable equation, (1.11b) of [9], equation
(1.4) can only be satisfied by requiring that the quantity in curly braccs vanish. In addition,
we introduce a new variable W*, defined as ¥ = ¥. ¥*. Equation (1.4) can then be re-
arranged to read:

Y+ — (Ze/o)(T. ¥*).G] x H = P. (1.5)
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To solve the above, we operate with . on the left; this is to be followed with the operation
. ¢ from the right and finally, by the operation x H from the right. One then obtains:

[(.%%).9] x H — Ze/o) ([2. (1. ¥9). Q1 x B} .§) x H=[#.P).FIxH. (L6

The next step consists in evaluating the quantity sandwiched between Ze/c and x H
in the second term of equation (1.6). The relaxation time formulation of the Boltzmann
transport thcory rests on the assumption that encrgies are conserved in the collision
between charge carriers, and that the velocity is randomized during such encounters.
Also, consistent with the above assumption, scattering of carriers ‘from one valley to
another is assumed to be included in the relaxation time 7. HERRING and Vocrt [11]
havc shown that in these circumstances Tis a diagonal tensor in the ellipsoidal coordinate
system. Let us set:

[ ] 1
o 0 0 . 0
m,
“ o 1
T=|0 1, O q= e 0|, H=(H. H.,H.)). (1.7)
%
0 0 0 0 -n: | =

On performing the indicated operations in the term under c0n51derat10n one arrives at
the following result :

. Y. QI x HI].§ = ¥* x (C.H), (1.8)
where
C = y&] e, ‘ (1.8b)

in which |l is the determinant of the mass tensor. Equation (1.8) may be checked by
substituting from cquation (1.7) on both sides, thus obtaining an identity. We now sub-
stitute equation (1.8) into equation (1.6) and apply the triple vector product rule to the
resulting middlc term, (Ze/c)[¥* x (C. H)] x H, to obtain:

(7. %%).§] x H — (Ze/o){(H. ¥*(C.H) — [H.(C.H)]¥*} = [(.P).Q) x H.  (1.9)
Next, return to equation (1.5) and operatc on both sides with .H(E.H) from the

right. By the triple scalar product rule, the resulting second term on the left vanishes
identically, leaving:

(¥* . H)(C.H) = (P. H)(C.H), (1.10)
so that on substituting this result into cquation (1.9), we finally obtain:
[(F.¥*).9] x H = (Ze/o)(P. H)(C. H) — (Ze/)[H.(C . H)]¥* + [(¥.P).§] x H.(1.11)
We have hereby succeeded in reformulating the second term of equation (1.5) in a manner
that allows this relation to be solved for W*. Inserting equation (1.11), one obtains:
7. (P + (e/c)*(P. H)(C. H) + (Zé'/f)[(T P).q] x H}
1 4 (e/c)’[H. (C H)]

Y =97 y*r= (1.12)
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from which the distribution function fcan be calculated. If the relaxation time is a scalar, if
V.T = 0, and for homogcneous materials where V,(6§5/Z¢) = E when V. T = 0, the abovc
reduces to the relation cited by Shibuya [12] and extended to anisotropic relaxation
times by Bullis [13].

2. THE GENERAL PHENOMENOLOGICAL EQUATIONS

The second task consists of writing down the phenomenological equations, bascd on
the transport of electric charge and of “kinctic cnergy” e, as given by:

J = (Ze/arn®) fxf A°k = —(Ze/4n?) f¥(v . W)(éfy/0e) d°k (2.1a)
Jo = (1/4m3) fevf &k = —(1/4n%) fem(v . W)(2fo/Ce) Ak (2.1b)
In the abovc, the intcgral involving f, vanishes identically. To obtain an cxplicit formula-
tion, wc substitutc for ¥ from cquation (1.12), utilizing cquations (1.3b), (1.7) and (1.8b).

After carrying out the requircd opcrations, one obtains the following expression for the
X’ component of ¥

W A =1,.P. + (ZefcVr .t AH o /mym ) H P + H,P,. + H_P_)—
— (Ze/cNtyt.H P./m, — 1.1 .H.Py/m)
= [Zet, + (Z&[cH) (1o, 1, HE/momy )V AL/e)+
+[(Ze /At pt,tH o Hy/mem,) + (€ fe)tet, Ho /m) IV, (C/e)+
+{(Ze* /)t ot H o H o fmam) — (€%/c) (et H . /m.) V. (C/e)+
+ (g — &)/ Tt [ + (e*/c?)xyt. HE /moam )V T+
+[(.;l,, — &)/T)(te1,/m)(Ze/o)H,. + (€*/c*) . H H,./m. )]V, T+
+[(tn — /TN ewto/m.)(— ZeJOH,, + (eX/c?)(a, H H . /m)V..T. (2.2)
where
A =1+ (@ /A)[rr Hi/mem, + tot Himem, + 1ot H2/mon (2.3)
Corresponding relations for ¥,, and ¥.. arc obtaincd by cyclic permutation of the
component subscript. .
Equation (2.2) and its )’,z’ analogues must now be substituted in equation (2.1).

In this connection, it becomes convenicnt to introducc the following transport integrals
b4 ’ ' ! r
@,y = x,y,£):

9000 1 llf'T/"Sk_l (‘5 B
K§ = _4_713J” "—.A’—*F—f;.)dsk (2.4a)
G(/'.’v‘) = ____1.__ [\[J rZ'TA T\"gg;l_ _(?0 dSk (2.4b

R S myA’ . s =l

1 m, vt .t.t.8 7 O,
L#F*) = — oy L (2.4c
! 4n3c? memem_ A" Jc )
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It is expedient to reformulate these integrals by expressing the energy & of charge
carriers relative to the appropriate band edge as:
¢ = (022K g + K2y + K2/, 2.5)
in the principal coordinate system of an ellipsoid. We can then introduce a new variable,
&, = k%/m,., with which (2.5) may be rewritten as:

e= (%2 & = h*é?)2. (2.6)
e
The above equation characterizes a set of concentric spheres in &-space. Henceforth, we

assume that the 7,. arc functions of & only. In this event, we may write d* = 4n¢? d¢,
whence:

d*k = (mgmem.)'? A€ = (dn/h)2e) 2 (mem . ) ' de. 27
By spherical symmetry, &2, = (1/3)é2, then:
(m,-_- h2)(@e/dk;)? = myed = 2¢/3. (2.8)

We now use equations (2.7) and (2.8) to rewrite (2.4) as:

2/ 2Amemem )20 g2 Af

K= &l 29

! 3nim, 0 ({ A ar (2.9a)
2/ 20m om0 g0t 12 of

(‘(/. vy — \,  d o=

5! 3nlemymh® g A 2 (29b)
2./2 ” S 11+1 250

=l " - de. 2.9¢

T 3% (m M, ) )2 n3 (')f P de (2.9¢)

Ulilizing cither equations (2.4) or (2.9), the X" component of the current density vector
J¥ = —(Ze/an) [[[v2 W (2f,/Ce) Ak becomes:

J¥ = Ze(ZeK§" + Ze*LiHLV (/) + Ze(@®GYYH.. + Ze L IF H )V (/o) +
+Ze(—c*H GV + Ze L H H.)V_((/e) + (Ze/ (KT up — K§)+
+e?H2(Lypig — L)V T
+(E*/THAGY 1y — G&*Y) + ZeH H ALy pty — L)V, T+

+ /T =H,(GY 1y — G + ZeH HALyptg — L)V T. (2.10)
The corresponding quantities J* and J*" are obtained by cyelic permutation of the co-
ordinate indices. Furthermore, one can show that J = —(1/4n°) {{fev2 ¥, (8fy/0e) d°k is

specified by a relation like equation (2.10), except that one power of Ze is deleted from
the right and that the subscripts g, k, and / in equation (2.9) arc raised by one unit. The
remaining components are again found by permutation of coordinatc indices.

The information discussed above can be succinetly summarized by the following
relationship: ?

= S (2.11a)




6 T. C. HarMAN, J. M, HoNiG and B. M. Tarmy

where in the principal coordinate system of each ellipsoid :

[e2K\) + L, H2.  ZeGY"H.. ~ZeGYOH, |
+e*LH H, +e*LH H,
T=] —Ze*G{H,, e2KY) ZeGYH,. | (2.11b)
+e*L H H, +e*L HZ +e‘LH, H,.
Ze’GYH . —-ZAGYH,,  +e*KY)
_+e*LH H, +e*L,H, H, +e*LH2 ]
[(Ze/T)(KS s — KE)+ +(eTNGE up — GEYVH +  (—¥/TNGEup — GF*)H, + |
+(Ze*/T)(Lyptp — L))HE +(Ze*/T)Lyup — L)H H,; +(Ze*/T)(Lyptp — LYHH,.
€= | — (TG s — GE")H.+  (Ze/THKY up — K§)+ (€/THGY'up — GY)H,+ |5 (2119
+(Ze3/T)(Lypp — LY)H, H, +(Ze3/T)L,pup — Ly)H? +(Ze*/T)(Lyptp — L)H,H,.
+(€*/TUGYup — GE*)H, + —(e*/TIHGY*"up — GY*)H .+ +(Ze/TYKS up — KE)+
| +(Ze*/T)(Lyptp — L)HH, +(Ze/THL,pp — Lo)H  H.. +(Ze/T)L pp — L)H? n
[ ZeKY) + Ze’L,H:.  e:G¥YH,. —e*GYH,. ]
+Ze*L,H H,  +Ze’L,H.H,
U=| —e*6¢7H,. ZeKY" e2GYH,. : (2.11d)
+Ze’L,H, H, +Ze3L,H3 +ZeL,H H,
e*GY™H,, —e2GYH,. ZeK$)
+Ze’L,H H._. +Ze’L,H H.. +Ze’L,H?2.
and
(1/THKS g — K5 (Ze/THGS " sty — GEV . —(Ze/THGYE 'y — G‘a""")"y—
+(€*/T)(Lyup — L3)HZ +(e?/T)(Lyup — Ly)H H, +(e*/T)(Lapts — L3)H H,
Y'=| (~ze/T)GE s — GE7IH.. (UT)KG 'y — K" (Ze/TNGY 'up — GY)H,. (211e)

+(e?/T)HLypp — L)H H, +(e*/THLapp — L:,)H)z,. +(e¥/T)Lyup — Ly)H,H.

(Ze/T)(GS*up — G )H,,
+(e%/T)(Latg — LYH, Hy:

—(Ze/T)GY*'up — GY*)H
+(?/T)(Laptp — L3)H, H..

(1/TYKS up — K¥)
+(e?/T)Lypty — L3)H2

To avoid the complexities inherent in the use of equation (2.11), we now make another
in a series of approximations by taking each 7,. to be independent of e. In this event, we
can rewrite equation (2.9a—c) as:

K(").') = (‘E;.-/'nl,;-A')Sk (2123,)
GY"™) = (z,1,/m,m.A'c)S, (2.12b)
Ly = (totpt/memam.A'c?)S,, (2.12¢)
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in which a new transport integral

22 (memm )P T8
Sn'_ 37!2 ,3 I & a —-de (2‘13)
has been introduced; n refers to the index k, g, in equation (2.12). The quantity A’ is
given by equation (2.3).
The zero magnetic field charge carrier conductivity partial mobility components are

U = et /m; (2.14)

in the principal coordinate system of each ellipsoid. This relation applies since we assumed
earlier that 7, does not depend on ¢; moreover, the u;. represent mobilities in zero
magnetic field. Equation (2.3) now becomes:

A =1+ upu HZ/? + uou,  HL/ + uou H2/c?, (2.15)
and the matrices (2.11) reduce to:
&= 5,eM (2.16a)
€=zo,M/T (2.16b)
U =zs,M (2.16¢)
R d «>
Y = Q,M/eT, (2.16d)
where Q; = S;up — S;+, and where
H,\? H. H.H, 1, H.H,
u, [l + u,.u,.(. 1.. ) ] U Uy (Z—C~ + .- = ~) Ui ( Z—+ u, 3 )
o 1 H, H.H, H, H,H,
M= N u,.uy.(—Z-L + 1.~ 2 ’-) [1 + tye, ( ) ] u U ( - e ) . (216¢)
H.H. H, H H H.\?
lix “:'(Z" + 1,'——(2~‘) e ( Z—— + .~ ) u,,[l +u,-u,'(—t ) ]

The above relations represent the end result of the statistical transport theory for a
group of charge carriers associated with an ellipsoid, in terms of the principal coordinate
system of that particular ellipsoid. We now wish to correlate the tensor entries with
quantities that are experimentally determined. For this purpose, it is convenient to
introduce phenomenological equations in partially inverted form [14], namely:

VE/e < <>
- 312
TJs i -x| lvr

The entries in the above relations are essentially definitions. Thus, when VT = 0, V(/e
and J are interconnected by the resistivity tensor,p; when J = 0, V{/e and VT are related
by the Seebeck tensor . Again, for J = 0, TJs is the heat flux (energy transfer past unit
area in the absence of a net particle transfer), which is related to the temperature gradient
by the negative thermal conductivity tensor, —¥. Kinally, for VT =0, the functional
dependence of TJg on J involves the Peltier tensor, 11. It is worth noting that the entries
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in the latter are conneeted to the ¥ entries by the Casimir-Onsager reciprocity condition
I;(—H) = Typ;(H); furthermore, p;(—H) = p;(H). and r;(—H) = x;(H).

For the momeént, we will continue to consider only the group of charge carriers
associated with a given ellipsoid. In this cvent, the entries in equations (2.17) ean be
expressed in terms of thosc in cquation (2.11a) or (2.16) as follows: By appropriate
manipulation of the results in [15]. it ecan be shown that:

Thg = Jo — K, VT — (up/Ze)J. (2.184a)

Actually, we wish to ignore the contribution of the lattice thermal conduction processes
to TJg and definc a new quantity TJg by

Tdg = Jdy — (ug/Ze). (2.18b)
Applying equation (2.18b) to equation (2.16), we can then writc:

> Z >
J S,eM TQ‘ M| [Vvie (2.19a)
1o, + gl |zs,M L6 VT (2.19b)
Ze el

Now solve for V/e in terms of J and VT in equation (2.19a) and climinate V./e from
cquation (2.19b): also replace the Q; by their definition. We then obtain:

- — - >

M! 'Ss ) 1
M 2 0
g S0 (S1 He )7
= (2.20)
S, ) 1 S3Sh — S8
| s | _(s1 ") Ze SyeT )Md A

Comparison between equations (2.20) and (2.17) then leads to the following identifications :
) _ N 10) /60 2@ils
Py =M S{%, (2.21a)

where it is elear from equation (2.13) that S, depends on the cffective mass of the carriers
under consideration; S, is therefore provided with the index v. For all ellipsoids lying
within a given band, S¢? is the same : this is also truc of the mobilitics of carricrs in a given
band. -
One can determine M ™' in equation (2.21a) from cquation (2.16¢) using the standard
inversion procedure. This lcads to the result:
I £ (I ¢\
(L1 I
™ .
Il.\'
(D] (v
o 1|, HY 1 /L
pP N ), [“ L) _Z\‘ :
SPe cooa C

H HOY 1
T W
o C

(2.21b)

e
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From a comparison of equallom (2.20) and (2.17), the general Scebeck tensor is found

to be: oo
(v) S(v)/S(v) - o)
o) _ Q 1 —D2/91 — Hp 11= ™[
pp Z(’TS(‘) 0 0 ? Z‘.()T [ ] p [ ]‘ (2‘22)

In the present approximation, therefore. the Secbeck coefficient for a single valley is
isotropic.
Finally, the clectronie contribution to the thermal conductivity is:

My _ S(l")Sg") — S(Z") r\‘—i(\') S(\)Sg) S(‘.).‘—’(\-)

b= —(?TS(") ‘ a ZTs(V)Z ' (2.23)

Since K" is proportional to @}, the Wicdemann-Franz law holds in the approximation
scheme uscd here.

Having dlcposed of the onc-group problem, it remains to find cxpressions for the
totality of carriers in all different groups of relevance. In general, the physical properties
of anisotropic materials are characterized in terms of several bands, onc or more of which
is of the multi-valley form. For the summation, we use as a guiding principle the fact
that the individual fluxes arc additive, whereas the gradients VT and V{/e are the same
for each group of carriers. Furthermore, one should recognize that cquation (2.17) is a
thermodynamie relation that takes no account of the dctails of conduction processes.
Hence, the form of equation (2.17) remains unaltered for the totality of charge carriers;
J and Jg, then refer to the total flux veetors, and the tensor entrics specify the appropriate
physical properties of the material as a whole.

Lect us then determine the total current density from cquation (2.19) as:

JE=I = Z S‘”cM“’ Vije + Z Q“’M“) T)-VT

»

= (T#) - Vele — (T o) VT, (224)

where equation (2.22) was used to arrive at the second line. Likewise, from equations
(2.20-2.23), the total entropy flux (exclusive of the contribution of the lattice to the heat
conduection) is found to be:

TIO = TY I = TY pY» - TR0 .yT, (2.25)
Now climinate J© in the above, using equation (2.19a); then:
TID = — Z‘E"M VT + 3 TpM(E™ -Vi/e — p76"™ - VT). (2.26)
For VT= 0, it follows from cquation (2.24) that J™ = 3"¢" -V(/e whence the total
conductivity and resistivity tensor is: g
-1
F=Ye: F=(Ye) . (227)
v v

According to cquation (2.24) [see also equation (2.17)], when J™ = 0, the total Seebeck
tensor is given by:

P = V(/)NT(T)=0 = (X p“M‘)) (2.28)

¥
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Finally, the total thcrmal conductivity (exclusive of the contribution from the lattice) is
found from equation (2.17) as —TJ$”/VT when J .= 0. Using this latter condition, we
can eliminate V{/e between cquations (2.24) and (2.26), thereby obtaining:

Rl Z il + T Z (}‘("))28(") - T(Z p(\')‘(',’(\')) “‘)‘ (Z p(\')‘(',-’(\'))
= TRO+ TY V7Y - T(Leve). 3 (2.29)

Having shown how to determine &, %, ¥ and ¥’ from one-group contributions, we can
now apply the above theory to the casc of Bi. Due to severe mathcmatical complexitics
which arise, we shall not explicitly determine ¥ according to equation (2.29); the reader
will note, howevcr, that this can be done in principle through a knowledge of ) and
‘@™, since the ¥ occurring in equation (2.29) can be eliminated via the Wiedemann-
Franz formulation, equation (2.23).

3. TRANSPORT TENSORS FOR THE CONDUCTION BAND OF BISMUTH:
THE TILTING OPERATION

Having constructed in Section 2 tensors for various transport coeflicients in the
principal coordinate system of each ellipsoid, we now begin the task of deriving thc
corresponding quantities for Bi. For this purpose, it is neccssary to consider its band
structure. )

In our further work, we shall spccify the orientation of cllipsoids with rcfercnee to a
crystal axis system in which the binary, bisectrix and trigonal axes constitute the x, y,
and = dircctions.

ABELES and MEIBOOM [5] (AM) assumed a conduction band exhibiting six whole or
six half ellipsoids which lie along the threefold binary axes and hence are separated by
60° in the x—y plane. They also postulated a valenee band in which two half or two wholc
cllipsoids lie along thc z-axis. The final formulae are independent of whether the bands
are assumed to contain six or three and two or one ellipsoids rcspectively ; we arbitrarily
consider the ease where the eonduetion band eontains three ellipsoids (labelled v = 1,2,3)
and the valence band, one ellipsoid (labelled v = 4). We also introduce the Jones-Shoen-
berg (JS) refinement [7], in which the conduction band ellipsoids arc rotated about their
respective binary axes in such a manner as to preserve a threc-fold symmetry about the
trigonal axis. Also, wc extend the AM treatment to the Sccbeck and Nernst tensors.
In recent years, cxperimental cvidence for two additional band model refinements have
appcared in the literature ; namely, (a) the non-parabolicity of the bands [16], and (b) the
occurrence of additional bands [17] We will neglect these latter complications becausc
introduction of (a) in the theory generally leads to integrals which havc to be evaluated
numerically, and both (a) and (b) lead to cxtremely complicated cxpressions.

The first step in the derivation consists in introducing a similarity transformation
which rotates each conduction band ellipsoid about the appropriate binary axis, (i.c.,
about its own X’ axis) by an angle 0(~ —6°), thereby bringing its X', }' plane into propcr
alignment with the x, y crystal plane. The transformation which accomplishes this will bc
denoted as the “‘tilting opcration” and the conduction band ellipsoids which have been
subjected to this operation are said to have been tilted (into the xy plane). The tilting
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operation is specified by the tensor:
1 0 0

“«—
B, =|0 cosf sind |. (3.1

0 —sin0 cos0

To determine the effect of this tilting operation, it is simplest to begin with the resistivity
tensor equation (2.21b). Wc inserted a subscript p to equations (2.21b), (2.22) and (2.23)
to remind readers that the corresponding matrices have been specified in terms of the
principal coordinate system of cach ellipsoid. Let us now compute a new resistivity
tensor for the tilted ellipsoid as:

1/ul? —-Z Y Z 1Y)
>y g ] 7 & - . .
= B, 50, B = S| ZHD/e 1) —Z Y% + 1ju|, (3.2a)
1

—ZHY/e ZHD/e+ Vu Ll

where the subscript ¢ refers to the expression that is found subsequent to thc tilting opcra-
tion. In the above, wc have introduced the definitions:

1 = 1/ul? i Clhee
11 = (cos® O)/ul? + (sin? O HY = HY cos 0 + H sin 0

1/u = (cos? 0)/ul? + (sin? 0)/ul? HY = —HYsin0 + HY cos 0

1
lu=|— - l) sin 0 cos 0. (3.2b)
ul ol

By straightforward inversion of equation (3.2a), one obtains the conductivity tensor
associated with the v tilted ellipsoid as:

M0 1 (2 ZHO  ZHY HOHY  —ZHY  ZHD  HYHD |
- (=) A G M E TRl
wu, ot c .c uc c e uc ¢
0 ‘ v ‘ 1) (), 2 3 1) (8152 (]
oo o SUe| SN ZHP  HPHP 1 (H,- ) ZHD L HPHT ] 33
DL uce uc c? TR (e we o omu ?
ZHY  ZHY HOHY -Z,HY 1 HYHY 1 H{\?
vily + vils L X ; ¥ vily Ty = + ( = )
1, uc ¢t 1 it 2 ety ¢ §
where
d DY = AW g, — (L)(1u,u — 2HOHY ¢°); (3.3b)
dan 2 3782
‘ AV = [+ ua(HY/e) + ua(HY O + wu(HD/o) (3-3¢)

According to thc modcl adopted herc, the tilting operation is unnecessary for ellipsoid
' = 4 in the valence band; its appropriate conductivity tensor is given by equation (2.16).
In principle. the various mobilities in cquation (3.3) should be indexed with a superscript v
as well, but the latter is temporarily omitted for the sakc of clarity.

The Scebeck tensor for the electrons, equation (2.22), which has bcen constructed
subject to the assumption that the 7, are independent of e, is isotropic in the present
approximation, and therefore remains unaffected by the tilting opcration. Also, the clec-
tronic contribution to the thermal conductivity associated with the charge carriers in a
particular ellipsoid can be obtained via equation (2.23).
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Before summing the individual 8" into a total conductivity tensor, it is necessary to
rotate ellipsoids v = 2,3 so that their principal axcs coincide with those of the crystal
axes (the ellipsoid v = 1 is already properly aligned). For this purpose, we introduce the
transformations (rotations about thc z axis by 120° and 240°):

1 /3 1
—2 V2 0 —2 N2 0
‘R /a 1 b 3 1
Bio=|-v: -2 0 Bruo={vz -2 0} (34)
0 1 0 0 1
. . . o . N e ) e
Their effect is found by carrying out the similarity transformations 6 * = 8,4 :6:* : 8,9
on equation (3.3a). Wc then obtain: B 20
EREEE $1 B J3 (He gy Hy) T
, 4¥7 0 gNT ° FY28f T 324
4w : 4 u.‘.u:+ T 4w * 4 uyu=+ ] 4 u,\ ¢ " V¢
AN LAH HL 1 z,(:F H, H, .
4’ u, ¢ ct — du NV e
L8312, ( H, H) HH, 2z H. 31
S TER TR W ¢) c? 2u ¢ T 2
o S| y3 L3 1 31 H\?" IZ,.(—Hx }{V)
; 4 . bl - i + /3=
’ D(;l T 4w 4w i N 4 N ( « ) 4du. N\ ¢ “ V¢ ¥
Z. M. WM, 31 3 3y H, H,
v f x 0y n Vo . . -V \'( _"‘,_,_',)
u. ¢ T4 4’ * # .;\'3 +
Z, H, H H H. 3Z,H. 11
v — x A v yoiz Y v = h
2u ( MR C ) = * 2 u ¢ 2uu|
3Z.(—H I Z.—H H
AV, ¥ ] 310 v 3 v 4
2 u.‘( c TV ¢ ) 411,‘( c ~ V7 )‘_
127, i, 1 37 H, 1, 1 H.\?
v 3 x ¥ y Y, i+ 3 < v ( =
4 u, (:F\ ¢ G ) “ 4 u, (+\ ls ¢ )’ L, ! c )
HH, 31 _1Z.4, MM, 120 1]
¢ T 2 wu 2u g ¢ T 2w 2ua -
in which:
& 1 3H, H.\? 3H H.\?
DSZ) = — M+ (- e+ [ FE= -1 . +
UMTNTA 2 ¢ ¢ k@ ¢
H.\* 1 2H(_ J3H H, :
+ ) g b -+ -(ﬂ, & -y —) (3.5b)
¢ : i u” ue ] @ ¢

In the above, we have also transformed the magnetic ficld components which were
originally expressed in terms of the principal coordinate system of the tilted ellipsoids.
The magnctic field with components H, (. = x.y,z) is now specified in the common
coordinatc system introduced earlicr. In carrying out the transformation, use has been

(3.5a)
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made of the relationships

4 3

one should also note that HY = HY = H,( = x, 3, 2).

In prineiple, we are now in a position to obtain the total @ tcnsor via equation (2.27).
In practiee, due to the denominators which differ for various v, the requisite algebraic
manipulations beeome excessive; we must rcsort to an examination of speeial cases in
order to obtain tractable results.

4. TRANSPORT TENSORS FOR BISMUTH WITH H = kH.

In this seetion, we specialize to the case where the magnetic field is aligned with the
= axis of the crystal eoordinate system, With this specialization, the subsequent mathe-
muatical operations are considerably reduced.

We first demonstrate that for the eonduetion band, the transport integral S may
be replaced with 1,/3, where n, is the charge carrier density in the conduetion band.
This identity may be established by sctting 7 = | in equation (2.13), introducing the
changes in variable x = ¢/kT, iy = py/kT, and integrating by parts; one thus obtains:

SO = dr mom o QKT WERF (015 = n™. 4.1
\ ) /

The central expression will be recognized as the density of charge carriers in a valley,
1. Since we assume that there arc three equivalent ellipsoids in the eonduetion band,
it follows that S = 1,/3, as was to be proved.

In now adding the partial conductivities, we return to equation (3.3) for ellipsoid 1,
to cquation (3.5) for cllipsoids 2 and 3, and to cquation (2.16) for ellipsoid 4. In these
tensors, we set I, = H, = 0. Next, we restrict ourselves to the case where 11, = m, = 1,
which applies to pure bismuth. Becausc of the considerable overlap between the valence
and conduction bands, this equality is almost always experimentally ¢ncountered. Finally,
we utilize the fact that 4 > uf” and v = 4%, as has becn experimentally well docu-
mented [5, 16].

For later use, we now construct, subjeet to the restrictions mentioned above, the partial
conductivities of carriers in the two bands. These quantitics are given by [see also equa-
tion (2.27)]:

3
T =5 9 and TP =¢W.

v=1

Fhe requisite algebraie manipulations are straightforward, though rather tedious, and
lead to the following results:

Au®)2 — (H_ /e 0
ne
G = o | Ho o An)2 0 ,  (42a)
v 0 a1 + n@nHZ/c?]

with
D, = A + uPulPHZ/c?, (4.2b)
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and
A=1— Py, (4.2c)
The corresponding tensor for holes is given by:
ul? (H./cuP* 0
30w = | - H S P o |, (433)
" 0 0 uPA,
with
A, =1+ uP’H?/c2, (4.3b)

From the above, one can then construct the total conductivity tensor as:

AA:“E:') 2 + D:ugcp) _(Hz)‘()[Azugl)“fy") - D:u?)z] 0
o = " L HIOA U™ — D yor AAE™2 & DutP 0
6':(]1:) = D.A. (H:. C)[ Uy "y — DUy ] Uy /< + pL
o UPUOH?
0 0 N [ Lt | R
+ A, D,ul?
The resistivity tensor is thus given by:
AAUP[2 + D u®P (H./)[A M4 — Duf’] 0
DA,
P.=6 "= "ZD; —(H/)[AMPuP — DuP'] AAUD)2 + DuP 0o | {4.52)
neD?
0 0 (D})*/D,
in which:
D, = A {u®[1 + uuPH2/c*) + D uP}D; (4.5b)
and
D; = [AA.u2 + D PV + [(H./c)(AuPu) — Dud")P. (4.5¢)

The gencralized Seebeck tensor may now be determined according to the relation
P.=7.:(89: 9, + d":%,), which is a reformulation of equation (2.28) as applied to
the present case. The partial conductivity tensors are given by equations (4.2) and (4.3),
the total resistivity tensor, by equation (4.4), and the quantities 'ﬁ’e'h = p,4[1] are specified

by equation (2.22). On carrying out the indicated operations, one obtains:

] Pexl(H) Py (H) 0
?:(H:) = Du' pxy( - H:) pxx(Hz) 0 s (4 68)
Lo 0 p.H)

where
Pex(H.) = [ApAUL/2 + 9D PN AAUT/2 + DuP ]+
+ (H:/C)Z[peAzugl)l‘f\:") - phD:ugcp)zHAzugl)ufv") - Dzugcp)z] ; (46b)
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Pey(H.) = (H./0){[ApA0/2 + pDuPYAUPU — D P’ ]—
—[AAD]2 + D uP[p AU — p,DuP’1}; (4.6c)
P.(H,) = (D}/D) {p A ul[1 + uPulHZ[c*] + pD. AP}, (4.6d)

The above results are too eumbersome to be of use in the caleulations. Aceordingly,
we eonsider two limiting eases, (a) (u"H,/c)*> < 1 (“weak field ease™), and (b) (uP’H,/c)* > 1
(“strong field case™) where Z,v = x, y,z and b = n, p. One should remember that in the
latter case, all quantum oscillatory phenomena are left out of aeccount, so that the strong
field results should be regarded as approximations to the region of intermediate field
strengths where quantum effeets are not yet appreeiable.

A limiting proeess in which terms of order H? or higher are neglected leads to the
results shown below :

. A2 + u®) (H /o) (Pul™ — AuPr) 0
e W o - Ay ™™ — (p)* () (P} .
"1@0 p. - Ane(u"') o (H /)@ — AdEY)  AWP2 + uf) 0 s (47
A2+ )
- - U E AdP
lim P, 1
Hamo 27 A2 + u"”)z
[ A2 + P2 + u) (/AP (R, — ) X

X () + AuP/2) 0

x | (1A Pm, ~ % A2 + pALD]2 + 1P) . 4y
X (U + AuP)2) 0

' A2 + 4P (p " + p,AuP)
0 { W AP

Likewise, on retaining only the highest even and odd powered terms in (4.5) and (4.6),
the strong field results read:

2uPul(H /) u‘")(u"‘)u‘") Au(”)z)(ﬂ c) 5
TAuP 211"" u™(AuP + 2ui)?
L e _—41(‘"’(1(‘"’11‘"’ Au“’)z)(H fe) 2uPulYH [c)
lim p.=—|- - — - 0 3 4.9)
Hewo ' © e AP + 2u"")2 AP + 24
1
g 4 )
PP — AP, — ) —2uPu(p, — p)(H./c) 9 i
uP( AP + 20y Au? + 2u)
o | ML S M) wo
Himo  © Au® + 2uM uP(AuP + 2ul)? ’ ’
(n) (p)
0 0 p ;' + p,,u
u(n) + ,,m
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Attention is direeted to the fact that one must proeced via the exact tensor, equation
(4.5), before taking the limit H. ~ o0 beeause in scveral instances the leading term of
the high ficld approximation vanishes identically. In these situations, the corresponding
entries involve terms of the next lower order in H,.

A discussion of the above results is deferred to Part 11 of this paper.

5. TRANSPORT TENSORS FOR BISMUTH FOR H=il, AND Il =jH,

Two other cases which remain relatively tractable are those for which the magnetic
field points along the x or y dircetions of the erystal system. The proeedure is exactly
the same as outlined in Section 4 and reviewed again in Section 6, cxeept that different
magnctic field ecomponents arc sct cqual to zero. We shall therefore only ecite the final
results. Despite all the simplifications used so far, the analogues of cquations (4.5) and
(4.6) for the quantitics §, *ﬁ’x,*{):., *ﬁ’y are cxtremely cumbersome; there seems little point
in'setting them down. Instead, we procced directly to the weak and strong field limits
eited below. We find:

20t + Au) 0 0
lim p,= —— 0 2u®™ 4+ Aulh) U™ — 24P e |, 5.1a
ke neD? - e J
0 — (Uuu — 24P ¢ AW + 2
with
D* = (@ + 24P + AuP); (5.1b)
and
L e 0 0
ul? + 3u
im & 1 () (PY( 3 02 d ), () (), 5
lim p, = D 0 P Gul + W) o) (H., /)G’ — AulPul)+4 . (5.2a)
Hx—o ne
+(H /el uuuPu ™
0 ~(H,/)Buu — AuPu@)+ dUuP(QA + DU + 3a N o?
7 + (11, o) uuPuPu® ™
with
b Gl + uP) -+ ) — @@ )2 4 ), (5.2b)
72(14‘:"’ + Auth) 0 (H, o) [2AuPu u‘,"‘uf."‘].
i :
lim P, = 0 2 + Aul) 0 i (5.3)

Hy—0 neD| )
(H,/Q)[2AuPu® — uPul] 0 A -+ 2u’)
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uPuPBu + W PYH o) — (H,/enu®y®)/ (H /o)ulPuPuP(1 — A)—
— U + 3u"Y P —

—34uPu?)]
uy + 3u?
o PR
"h_r:lz Py = D= (IE /e u® Au® 4y 2uPuPuA —
¥
(5.4)
—uPuP Wl + W)
a4+ 3P

— (/o) ul™uPu®(1 — A) - 2AuP P —
— iPuP + )] uPuP(H,/c)* D™

) @)y )
— (W + 3uY e — >
w yA w1 + 3uP) (U + 3ud)

— 34uP)
ul + 3uP

This disposes of the various resistivities. The Scebeck—Nernst tensors in these approxi-
mations are given by:

U + AuPYpul + 2pyul’) 0 0
. 1
Jim ¥, = 0 (U + AuP)pul + 2pu?) — uuP + 26p. — pH el (5.9)
0 uPuP W + AuPYp, — pH/c (U + 2P pul + Ap,ulP)
r .
{p.ul + 3puiPID™ 0 0
u? + 3ulP
. 1 ,
Jim P, s 0 PUP[AUD + (24 + ] + — (p. — pUPUP (/U™ 4
+ PGl + u?)+ + (H/e)u? + 3ul); 9 (5.6)
+ (H/e)pe — puuluPu®/u
0 = (p, — puPUP ™ 1 PP + Alll(;’)) + P34+
— (1 /o)B3u™ + 24 + DHuP]} + (24 + L] -
1 = (pe — PRUPUPUPUP /WY H Je) |
[(u® + AuPYpu® + 2puP) 0 uPUPW® + 2uP) x |
X (p - ph)H We
. 1
“lzmo v, o 0 W + AuPpu® + 2p,uP) 0 ; ()]
— uPuP + AuP)p, — p)H fc 0 @™ + 2uP)pu® +
L + Apul?) .
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B () (M) (P)y ) 7
W uuPuP(p, — pNH /¢
WP + 300 3p? + puly) T “7:] = wikH /) wPuPGU + Ul x
+ uP[p (AU + 244 + ")+ X (p. — PulH, /c)
+ P84 + D + 3442']]]
u® + 3u®
1| = 26 + AuPp, — p,) uPuu(p, —
‘Ky = —| ——— =L Xpe = Py P U (1 — A) + (Au” + u) x YUy Pe = )
b (H,/c)u™ @ + 3uP) u™
x (3pu + pu®)
(Bl + uBuP + ul) x
X (pul” + p,Aul?)
t= 4P (p, — pX2AU + uuP(1 — A)2p 1P
— uPPp, — pXH /)D” - uul — uPyl) + P + WP}
(U + 3u®) Bul + uMu ©® + 3u?) i

6. PRELIMINARY DISCUSSIQN

The above derivations provide all the results needed in the derivation of appropriate
figures of merit for Bi; this extension of thc work and the comparison between theory
and experiment is deferred to Part II of this paper. However, at this stage it is worthwhile
to review in outline form the gencral procedure and assumptions used in the derivations
so far.

Starting with the conventional formulation of the electric and thermal currents in
terms of transport integrals, the distribution function was determined by solving the
Boltzmann transport equation in the relaxation time formalism. Allowance was made for
anisotropy of the medium and for the joint action of electric, magnetic, and temperature
fields. The results so obtained specify the fluxes J and J, in terms of the “forces” V(J/e)
and VT; after converting from J, to Js one obtains a set of phcnomenological cquations
satisfying the Casimir—Onsager reciprocity conditions. On partial inversion of these
relations, whereby V(J/e) and Jg were assigned the status of dependent variables, the
phenomenological equations were cast in a form that permitted the idcntification of
the resistivity, Seebeck, and thermal conductivity tensors in tcrms of transport intcgrals.
Expressions so obtained were then properly summed to takc into account the contribu-
tions arising from carricrs in various conduction and valence band ellipsoids, allowance
being made for the tilt of the former sct about their respective binary axes.

The final results are based on the following simplifying assumptions: (a) ¢ is assumed
to vary quadratically with the wave number vector components, {b) only contributions
due to the overlapping valcnee and conduction bands were considercd, (¢) the relaxation
time formalism was used in solving the Boltzmann equation, (d) all phonon-charge
carrier interactions were presumed to be accounted for in specifying the rclaxation time,
and intervalley scattering eftects were ignored, (e¢) hot electron eflects and quantum
effects in the high magnetic field region were not included. To obtain tractable analytic
cxpressions, we also (f) considered only the special case in which the magnctic ficld is
aligned with each of the crystal symmetry axes, (g) neglccted, where permissible, 1/u

.(5.8)
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relative to 1/u{” and set u%’ = u{P, where the u® are electron or hole mobilities for
H = 0 along the indicated crystal symmetry axes, (/1) restricted ourselves to the intrinsic
case by setting n = p, and (i) specialized to the case of low and high magnetic fields.
Finally, (j) for thc weak field limiting case, only terms of order H® and H' were retained.
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Résumé—On a appliqué au bismuth le formalisme du temps de relaxation; les résultats sont utilisés, dans
la partie I, pour déterminer le facteur de mérite du bismuth dans les processus de conversion d’énergic.
En utilisant, pour le bismuth, le modéle de Jones-Shoenberg, on dérive des expressions analytiques de Ia
résistivité électrique, de la conductivité thermique, et des coefficients de Hall, de Seebeck et de Nernst.
On résout I’équation de transport de Boltzmann donnant la fonction de distribution perturbée, en utilisant
des temps de relaxation anisotropes. Le résultat est alors introduit dans les intégrales de transport repré-
sentant le courant électrique et le flux d’énergie, pour aboutir aux équations phénoménologiques valables
pour chaque groupe de porteurs de charge associé 4 un ellipsolde donné. On additionne les contributions de
chaque groupe de porteurs, dans le systéme de coordonnées du cristal, pour obtenir les coefficients de trans-
port mentionnés ci-dessus. Pour obtenir des expressions analytiques, il est nécessaire de considérer Ies cas
particulicrs oll le champ magnétique est aligné avec chacun des trois axes de symétrie, et de passer a la
limite des champs magnétiques trés faibles ou trés forts.

Zusammenfassung—Die Transport-Theorie, begriindet auf dem Relaxationszeit-Formalismus wird auf
Wismut angewendet. Diese Erbebnissc werden dann in Teil II benutz, um die Giiteziffer von Bi bei Energi-
cumwandlungs-Prozessen zu bestimmen. Unter Benutzung des Jones-Shoenberg-Models fiir Wismut
werden analytische Ausdriicke fiir den spezifischen elektrischen Widerstand, die Wiarmeleitfahigkeit und
fir die Hall-, Seebeck- und Nernst-Koeffizienten abgeleitet. Die Boltzmann’sche Transportgleichung wird
gelost fir gestorte Verteilungsfunktionen unter Benutzung von anisotropen Relaxationszeiten. Dieses
Resultat wird dann in die Transport-Integrale fiir den elektrischen Strom und den Energiefluss eingefiihrt,
um phanomenologische Gleichungen fiir jede Art von Ladungstrigern zu erhalten, die mit einem gegebenen
Ellipsoid verbunden sind. Die Beitrige jeder Gruppe von Ladungstrigern werden dann addiert in dem
gemeinsamen Symmetrie-Koordinatensystem des Kristalls, um die oben erwidhnten Transportkoeffizienten
zu erhalten. Um analytische Ausdriicke zu erhalten, war es notwendig, die Sonderfille durchzuarbeiten,
in denen das Magnetfeld mit jeder der drei Symmetrie-Achsen iibereinstimmt und iiberzugehen auf die
Grenzfille sehr niedriger oder sehr hoher Magnetfelder.




